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1. Introduction

A black hole in asymptotically flat spacetime emits thermal radiation with characteristic

temperature

TH =
κ

2π
, (1.1)

where κ is the surface gravity of the black hole [1]. The Hawking temperature TH is the

temperature of the radiation as measured by asymptotic observers. The local temperature

measured at a finite distance from the black hole will in general be different from TH and

depends on the state of motion of the observer carrying out the measurement. For example,

the temperature measured by a fiducial observer, i.e. an observer who remains at rest with

respect to the black hole at a fixed distance, will differ from the temperature measured by

an observer in free fall at the same distance.

For a spherically symmetric static black hole, described by a line element of the form

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (1.2)

the local fiducial temperature is given by

TFID(r) =
TH

√

f(r)
. (1.3)

The fiducial temperature TFID diverges at the black hole event horizon and in asymptot-

ically flat spacetime TFID approaches the Hawking temperature asymptotically far away

from the black hole. In asymptotically anti de Sitter spacetime, on the other hand, the

fiducial temperature goes to zero far away from the black hole.

There are several ways to obtain TFID. It can, for example, be inferred from the

transition rate of a particle detector interacting with the radiation field at a fixed position

with respect to the black hole, as was shown by Unruh [2]. In the same paper, Unruh also
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showed that a uniformly accelerated observer in flat spacetime, with proper acceleration

a, will detect thermal radiation at the so-called Unruh temperature,

TU =
a

2π
. (1.4)

The Hawking effect and the Unruh effect are related. Both arise from a mismatch between

vacuum states employed by different observers and both involve regions of spacetime that

are hidden behind horizons.1 The connection between the Unruh effect and the Hawking

effect is particularly apparent for a large Schwarzschild black hole, for which the near-

horizon region is almost flat. In this case, a fiducial observer who remains fixed close to

the event horizon measures high fiducial temperature (1.3), but this observer is also highly

accelerated in (almost) flat spacetime.

There is also a more indirect relation between the two effects that involves the global

embedding of the black hole spacetime into a higher dimensional flat spacetime [4, 5]. In

this context the Hawking effect for a fiducial observer in the black hole spacetime can be in-

terpreted as the Unruh effect for a uniformly accelerated observer in the higher dimensional

flat spacetime. This relationship has been mapped out for a variety of static, spherically

symmetric spacetime geometries by Deser and Levin [5] and will be briefly reviewed below.

The local fiducial temperature and the Unruh temperature in a flat embedding geometry

have also been shown to match for various d-dimensional static black holes in [6].

The main goal of the present paper is, however, to obtain the local temperature as

measured by observers in free fall towards a black hole. The notion of a local free-fall

temperature is less precise than that of a fiducial temperature. This is because a detector

in free fall is not static but moves in an environment that is a function of the radial variable

r and will therefore in general measure a spectrum of radiation that is not precisely thermal.

On the other hand, for a macroscopic black hole and an observer who is moving sufficiently

slowly with respect to the black hole rest frame the change in the environment will be

slow compared to the microscopic processes involved inside a particle detector, allowing

temperature readings to be made as the observer progresses along the free fall orbit. Even

if these temperature readings do not correspond to a precise thermal state they provide

an effective temperature that indicates the amount of heating that an observer in free fall

would experience along a given orbit. See [7] for a related discussion involving observers

in general stationary accelerated frames in flat spacetime.

We obtain the local free-fall temperature by extending the above embedding method

to a certain class of freely falling observers. Our proposal involves two key steps. One

is to consider the Unruh effect for accelerated observers whose proper acceleration is not

uniform but changes with time. As long as the rate of change of the acceleration is slow

on the timescale of temperature measurements with whatever particle detector a given

observer is carrying we may talk about a local Unruh temperature being measured along

the observer’s orbit.

The other key step is to extend the embedding method to include a certain class of

observers in free fall, which we refer to as ’freely falling at rest’, or FFAR, observers. As

1The two effects are not equivalent, however. In particular, the quantum states that enter into the two

calculations are different (for a review see [3]).
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emphasized by Deser and Levin [5] the matching between the local temperature measured

by a fiducial observer and the Unruh temperature of the corresponding uniformly acceler-

ated observer in the higher-dimensional flat spacetime rests on the world-line of the fiducial

observer being tangent to a time-like Killing vector in the black hole spacetime. Or, in

more physical terms, that the fiducial observer is at rest in a static geometry. The fact that

geodesic orbits are not tangent to the time-like Killing vector suggests that the embedding

method cannot be applied to observers in free fall but we note that there are special points

where the tangent vector to a geodesic orbit is in fact parallel to the time-like Killing

vector. These are the turning points of radial geodesics where freely falling observers are

momentarily at rest with respect to the black hole. Such a ’freely-falling observer at rest’,

or FFAR observer, can be obtained by switching off the acceleration keeping a fiducial

observer in place. Immediately after the release the formerly fiducial observer is in free fall

but has not yet began moving towards the black hole.

The FFAR condition at a given spatial location outside the event horizon determines

a unique radial orbit that has its turning point at that location. The radial orbit in turn

defines a curve in the higher dimensional flat embedding spacetime and this curve can

be viewed as the worldline of an accelerated observer in the flat spacetime. In general

the acceleration of this observer is not uniform but for a macroscopic black hole we will

have a local Unruh temperature defined at the point on the curve that corresponds to the

turning point of the radial orbit, and it is this local Unruh temperature that we identify as

the local free fall temperature in the black hole geometry. We note that it seems natural

to consider FFAR observers when discussing the black hole temperature as measured in

free fall because they are precisely those freely falling observers who are at rest, if only

momentarily, in the black hole rest frame. As discussed above, even FFAR observers will

detect a spectrum of radiation that is only approximately thermal. All other observers

in free fall are moving with respect to the source of the Hawking radiation and therefore

detect a spectrum of radiation that is further ’transformed’ away from thermal.

We consider a number of examples in subsequent sections of the paper to illustrate

the procedure and to check if it provides physically reasonable answers for a local free-fall

temperature around various four-dimensional black holes including Schwarzschild, AdS-

Schwarzschild, and Reissner-Nordström. The case of so-called large AdS-Schwarzschild

black holes is particularly interesting since the definition (1.1) gives a Hawking temperature

that grows without bound with increasing black hole mass, but in recent work by S. Hem-

ming and one of us [8] it was claimed that observers in free fall would nevertheless measure

very low ambient temperature near one of these large AdS black holes. This expectation

is confirmed by the direct calculation of a free-fall temperature for AdS-Schwarzschild in

section 4.

It would be interesting to compare our results obtained by the embedding method to a

more conventional calculation involving an detector coupled to a quantum field in a black

hole background geometry [2]. The fact that an observer who falls into a black hole is not

stationary, and runs into the black hole singularity within a finite proper time, makes it

awkward to extract the detector transition rate per unit time from such a calculation. There

is, however, another class of freely falling observers for which a conventional computation
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of the Hawking effect can be carried out, namely geodesic observers in stable circular

orbits around a spherically symmetric black hole. Such a calculation was performed by

Chen et al. in [9]. They also applied the embedding method to this class of observers and

compared results obtained by the two methods. A circular orbit around a Schwarzschild

black hole is mapped into a curve that involves rotation in addition to acceleration in the

5+1 dimensional flat embedding spacetime. A generalized Unruh effect involving motion

along a general stationary curve of this type in 3+1 dimensional Minkowski spacetime was

studied by Korsbakken and Leinaas in [7]. It is straightforward to extend their results to

higher dimensions and Chen et al. found a perfect match between the local temperature

measured by a geodesic observer in a circular orbit around a Schwarzschild black hole and

the generalized Unruh temperature of the corresponding observer in the higher-dimensional

embedding space,

TCIRC(r) =
TH

√

1 − 3m/r
, (1.5)

where m is the black hole mass. We will not repeat their calculations here but refer to [7]

and [9] for details.

In the present paper we are primarily interested in observers in radial free fall into

a black hole. As mentioned above, such observers have the drawback that they are not

undergoing stationary motion but since they eventually fall into the black hole they probe

the near horizon region where there are no stable circular orbits.

2. Higher-dimensional embedding

Let S be a d dimensional spacetime manifold with metric gµν that is embedded into a D

dimensional Minkowski spacetime M with a metric ηIJ of mostly plus signature and with

one or more time dimensions. Here the Greek indices run from 0 to d − 1 and the capital

Roman indices from 0 to D − 1, D > d. Writing the embedding functions,

ZI = ZI(xµ) (2.1)

the metric of S is induced from the higher-dimensional flat metric through

gµν = ηIJ
∂ZI

∂xµ

∂ZJ

∂xµ
. (2.2)

Such an embedding always exists [10] but obtaining a global embedding in the presence of

an event horizon requires some care.

The tangent space T (M) of the Minkowski spacetime, with basis { ∂
∂zI }, can be written

T (M) = T (S)
⊕

N(S), where T (S) is the tangent space of S, with basis { ∂
∂xµ }, and N(S)

is orthogonal to T (S). We choose a basis {ξ̂m} in N(S) such that it is orthonormal with

respect to the Minkowskian metric of M , i.e. η(ξ̂m, ξ̂n) = ηmn. In the examples we consider

below N(S) is either Euclidean or has one time-like dimension.

If xµ(τ) is a timelike curve in S then the tangent vector u = d
dτ

can be written [10, 11]

du

dτ
= ∇uu + α(u, u). (2.3)
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Here ∇u denotes the covariant derivative in S along u and α is the second fundamental form

of S. We have that ∇uu ∈ T (S) and α(u, u) ∈ N(S) so that when we square equation (2.3)

we obtain the Pythagorian relation,

a2
D = a2

d + α2 (2.4)

where

a2
D = ηIJaI

DaJ
D,

du

dτ
= aI

D

∂

∂zI
, (2.5)

a2
d = gµνaµ

daν
d, ∇uu = aµ

d

∂

∂xµ
,

α2 = ηmnαmαn, α(u, u) = αmξ̂m.

The aI
D are the components of the acceleration vector of an observer in the D-dimensional

embedding space moving along the image of the original curve while aµ
d are the components

of the acceleration in S.

In the case of a fiducial observer in a static spherically symmetric spacetime S the cor-

responding D-dimensional observer is uniformly accelerated. If the constant D-acceleration

is spacelike it defines an Unruh temperature which agrees with the local fiducial tempera-

ture in S [5]. If, on the other hand, the D-acceleration is timelike the Unruh temperature

is formally purely imaginary and the fiducial observer in S does not detect any thermal

radiation. An example of the latter behavior is provided by fiducial observers in an oth-

erwise empty AdS spacetime, i.e. observers who are accelerated so as to remain in a fixed

position relative to a reference observer at the origin in AdS space [5].

For FFAR observers we find the image under the embedding of the turning point of the

corresponding radial orbit, evaluate the acceleration D-vector there, and take the resulting

local Unruh temperature in M to define a local temperature for observers in free fall in

S. We consider several different static spherically symmetric geometries of the form (1.2)

and verify that the free-fall temperature so obtained meets a number of criteria that can

be expected on physical grounds. In particular, the free-fall temperature is finite at the

event horizon of a black hole while the fiducial temperature is divergent. This follows

immediately from the embedding relation (2.4) since ad = 0 for an observer in free fall

while for a fiducial observer ad → ∞ at the event horizon.

3. Schwarzschild black holes

Consider a four-dimensional Schwarzschild black hole. The line element is given by (1.2)

with

f(r) = 1 − 2m

r
, (3.1)

where m is the black hole mass. A global embedding of the Schwarzschild geometry into

six-dimensional Minkowski spacetime with metric ηIJ = diag(−1, 1, . . . , 1) was found by
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Fronsdal [12],

Z0 = 4m
√

1 − 2m/r sinh(t/4m), (3.2)

Z1 = 4m
√

1 − 2m/r cosh(t/4m),

Z2 =

∫

dr
√

2m/r + 4m2/r2 + 8m3/r3,

Z3 = r sin ϑ cos ϕ,

Z4 = r sin ϑ sinϕ,

Z5 = r cos ϑ.

Now consider a freely falling observer, dropped from rest at τ = 0 at r = r0. The equations

for the orbit are
dt

dτ
=

√
1 − x0

1 − x
,

dx

dτ
=

x2

2m

√
x − x0, (3.3)

where we have introduced a dimensionless radial variable x ≡ 2m/r which runs from x = 0

at r → ∞ to x = 1 at the event horizon. The 6-acceleration is spacelike for all timelike

orbits and at the turning point x = x0, where the observer is dropped from rest, its

magnitude is given by

a6 =
1

4m

√

1 + x + x2 + x3. (3.4)

Taking the local temperature measured by a freely falling observer at rest to be the local

Unruh temperature of the corresponding observer in the six-dimensional flat spacetime we

obtain

TFFAR =
1

8πm

√

1 + x + x2 + x3. (3.5)

We see that asymptotically far from the black hole TFFAR reduces to the Hawking temper-

ature TH = 1/8πm and then gradually rises to TFFAR = 2TH as the horizon is approached.

This is in line with physical expectations. In contrast with fiducial observers, who detect

high-temperature radiation in the region near the event horizon due to the strong acceler-

ation that is needed to keep them in place, observers in free fall will only detect a smooth

rise by an order-one factor in the temperature going from the asymptotic region towards

the horizon. Figure 1 plots the two temperatures TFID and TFFAR as a function of the

dimensionless radial variable x.

We note that our method gives a physically reasonable answer for TFFAR at all values

of r ≥ 2m. However, the precise numerical value TFFAR = 2TH at the event horizon

has limited operational meaning. First of all, as was discussed in the introduction, the

local free-fall temperature is not a precise notion. On top of this, a freely-falling observer

passing through the horizon has only a proper time of order m left before running into the

curvature singularity at r = 0 and since the characteristic wavelength of thermal radiation

at T ∼ 2TH is also of order m the observer cannot measure temperature to better than

O(1/m) precision near the horizon. Although our result for the free-fall temperature is

thus only qualitative in the region near the event horizon, it does confirm the expectation

expressed in early work of Unruh [13] that an infalling observer will not run into highly

energetic particles at the horizon.
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TFIDTFFAR
0 0.5 1012

345T/T H
Figure 1: The local temperatures TFFAR and TFID plotted as a function of the dimensionless

radial variable x = 2m/r. The fiducial temperature TFID blows up at the horizon while the free-fall

temperature TFFAR remains finite.

4. AdS-Schwarzschild black holes

Now consider a black hole in 3+1 dimensional spacetime with negative cosmological con-

stant Λ = −3/ℓ2. The line element is given by (1.2) with

f(r) = 1 − 2m

r
+

r2

ℓ2
, (4.1)

where m is the mass of the black hole. The event horizon is located at r = rH , where rH

is the real root of 1 − 2m/r + r2/ℓ2 and the surface gravity is

κ =
ℓ2 + 3r2

H

2rHℓ2
. (4.2)

The surface gravity has a minimum value, κ ≥
√

3/ℓ, and each value above the minimum

one is realized for two values of rH , corresponding to a large AdS black hole with rH > ℓ/
√

3

and a small AdS black hole with rH < ℓ/
√

3. Large AdS black holes with rH ≫ ℓ correspond

to high-temperature thermal states in a dual gauge theory [14] while small black holes with

rH ≪ ℓ can be viewed as more-or-less ordinary Schwarzschild black holes in a ’cosmological’

background with a negative cosmological constant.

The Hawking temperature (1.1) of AdS black holes on the ’large’ branch grows linearly

with rH , and becomes arbitrarily high for very large black holes. As we will see below, this

does not mean that the physical temperature measured by an observer in free fall becomes

large outside large AdS black holes.

The AdS-Schwarzschild geometry can be globally embedded into a 7-dimensional flat

spacetime with the metric ηIJ = diag(−1, 1, . . . , 1,−1), which has two time-like dimen-
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sions [5]. The embedding functions are given by

Z0 = κ−1
√

f(r) sinh(κt), (4.3)

Z1 = κ−1
√

f(r) cosh(κt),

Z2 =

∫

dr
ℓ3 + ℓr2

H

ℓ2 + 3r2
H

√

r2rH + rr2
H + r3

H

r3(r2 + rrH + r2
H + ℓ2)

,

Z6 =

∫

dr
1

ℓ2 + 3r2
H

√

(ℓ4 + 10ℓ2r2
H + 9r4

H)(r2 + rrH + r2
H)

r2 + rrH + r2
H + ℓ2

,

and Z3, Z4, Z5 are three-dimensional spherical coordinates as in equation (3.2).

Calculating the FFAR acceleration as before, one finds the following expression for the

free-fall temperature squared,

T 2
FFAR =

1

16π2ℓ2

−4(1 + x) + (c2 + 1)(c2 + 5)x2 + (c2 + 1)2(1 + x + x2)x3

1 + x + (c2 + 1)x2
, (4.4)

where x = rH/r and c ≡ ℓ/rH . Figure 2 plots the free-fall temperature squared for black

holes on the two branches: A a large one with c = 0.5 and a small one with c = 100. In

both cases T 2
FFAR rises monotonically with x, from a negative value at x = 0 to a positive

value at the event horizon at x = 1. The negative value of T 2
FFAR at spatial infinity reflects

the fact that there is no thermal radiation in the empty AdS region asymptotically far

away from the black hole. Near the horizon, on the other hand, the free-fall temperature

is real valued.

The expression (4.4) for the free-fall temperature simplifies in the two limits r → ∞
and r → rH , i.e. x → 0 and x → 1 respectively. For r → ∞ one obtains

T 2
FFAR → − 1

4π2ℓ2
, (4.5)

which is precisely the answer found for a geodesic observer in empty AdS space [4]. At the

event horzion, r → rH , we instead find

T 2
FFAR → 1

4π2r2
H

. (4.6)

For a small AdS black hole with ℓ ≫ rH the horizon area reduces to that of a Schwarzschild

black hole in asymptotically flat spacetime, rH ≈ 2m, and (4.4) reduces to TFFAR → 2TH

at the event horizon. As we move away from the black hole, but remain within the region

rH < r < ℓ, the free-fall temperature approaches the Hawking temperature. When we get

to cosmological length scales r > ℓ the geometry approaches that of empty AdS spacetime

and T 2
FFAR turns negative. This behavior is evident in the lower plot in figure 2 .

On the other hand, for a large AdS black hole with rH ≫ ℓ we find that at the event

horizon

TFFAR → 1

2πrH
≪ TH . (4.7)

The characteristic wavelength of the thermal radiation is then λ ∼ 1/TFFAR ≫ ℓ and at

such low temperatures one expects the radiation to be mainly in low angular modes. The

– 8 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
6

0 0.5 1�0.08�0.06�0.04�0.0200.02
(T FFAR/T H)
2

0 0.5 101
23
4

(T FFAR/T H)
2

Figure 2: T 2
FFAR plotted in units of T 2

H
for c = 1/2 and c = 100. A negative value of T 2

FFAR is

interpreted as having no thermal radiation in that region.

value of r where the free-fall temperature squared changes sign indicates the size of the

radial ’box’ that the thermal radiation is confined to. It can be easily verified that T 2
FFAR

in equation (4.4) equals zero at the following value of the dimensionless variable x,

x = x0 = −1

2
+

√

1

4
+

2

c2 + 1
. (4.8)

For very large AdS black holes, we can expand in the small parameter c = ℓ/rH ≪ 1. The

r-coordinate location of the zero is r = r0 where

r0

rH
=

1

x0

= 1 +
2

3

(

ℓ

rH

)2

+ O
(

ℓ

rH

)4

, (4.9)

and the spatial proper distance D0 from the horizon to the point r = r0 is

D0 =
2
√

2

3

(

ℓ

rH

)

ℓ + . . . . (4.10)

The thermal radiation is confined to a layer of thickness D0 ≪ ℓ surrounding the horizon of

the large AdS black hole. Since the thickness of the layer is much smaller than the charac-

teristic wavelength of thermal radiation at the local free-fall temperature the radiation field

– 9 –
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outside the black hole will be in the form of an evanescent wave rather than propagating

thermal modes. It therefore appears that an observer in free fall outside a large AdS black

hole will not see thermal radiation at all, even if the Hawking temperature of the black

hole is very high.

5. Reissner-Nordström black holes

Finally, we calculate the free-fall temperature for a Reissner-Nordström black hole. The

line element is given by (1.2) with

f(r) = 1 − 2m

r
+

e2

r2
, (5.1)

where m is the mass and e is the electric charge of the black hole. The geometry has two

horizons at r± = m ±
√

m2 − e2, the zeros of f(r).

It is not necessary to find a global embedding of the Reissner-Nordström spacetime into

a higher-dimensional flat spacetime in order to obtain the temperature outside the outer

horizon using the embedding method. It is sufficient to find an embedding that covers the

region outside the inner horizon [5],

Z0 = κ−1
√

f(r) sinh(κt), (5.2)

Z1 = κ−1
√

f(r) cosh(κt),

Z2 =

∫

dr

√

r2(r+ + r−) + r2
+(r+ + r)

r2(r − r−)
,

Z6 =

∫

dr

√

4r5
+r−

r4(r+ − r−)2
,

where the surface gravity is κ = (r+ − r−)/2r2
+ and, once again, Z3, Z4, Z5 are three-

dimensional spherical coordinates as in equation (3.2). The Z6 direction is timelike as in

the AdS-Schwarzschild case. We note that this embedding is not valid for an extremal

black hole but we can deduce the temperature in the extremal case by taking the limit

r+ → r− in the final answer.

The result for the square of the free-fall temperature is

T 2
FFAR =

1

16π2r2
+

(1 − b)2(1 + x + x2 + x3) − 4bx4 + 4b2x5

1 − bx
, (5.3)

where x = r+/r and b = r−/r+. Asymptotically far from the black hole the free-fall

temperature reduces to the Hawking temperature,

lim
x→0

TFFAR =
r+ − r−
4πr2

+

= TH . (5.4)

In figure 3 the square of TFFAR is plotted for three different values of b.
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b = 0.4b = 0.6b = 10 0.5 1=4=3=2
=101T FFAR2 F(4 π r +

)2

Figure 3: T 2
FFAR for a Reissner-Nordström black hole plotted for three different values of b =

r
−

/r+. Geometries with b ≤ 0.5 have positive temperature everywhere outside the black hole but

for b > 0.5 there is no thermal radiation in a region surrounding the horizon, where TFFAR is purely

imaginary.

In the limit b → 0 the above result for the free-fall temperature reduces to that for the

Schwarzschild case, while in the extremal limit r± → m we find

T 2
FFAR

∣

∣

extremal
= − m2

4π2r4
. (5.5)

As before, a purely imaginary temperature is interpreted as no thermal radiation and this

is exactly what is expected for an extremal black hole. Furthermore, T 2
FFAR

∣

∣

extremal
→ 0

as r → ∞ in agreement with the extremal value of the Hawking temperature, TH = 0.

The curve in the x-b plane where T 2
FFAR changes sign is given by

x0 =
1 − b +

√
1 + 6b − 7b2

4b
, 0 < x0 ≤ 1. (5.6)

By analyzing this relation one finds that for 0 ≤ b ≤ 1
2

there is everywhere positive

temperature outside the black hole but when 1
2

< b < 1 the free-fall temperature has a

single zero at r = r0 > r+. Outside r = r0 there is positive temperature but for r+ < r < r0

the free-fall temperature is purely imaginary, suggesting that there is no thermal radiation

in the region close to the horizon of a black hole with high charge-to-mass ratio. This is

perhaps not surprising since in the extremal limit the near-horizon geometry approaches

AdS2×S2 and a freely falling observer in AdS spacetime does not see thermal radiation.
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